
CS250P: Computer Systems Architecture
Explicit Parallelism

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson



Modern Processor Topics - Performance

❑ Transparent Performance Improvements
o Pipelining, Caches

o Superscalar, Out-of-Order, Branch Prediction, Speculation, …

o Covered in CS250A and others

❑ Explicit Performance Improvements
o SIMD extensions, AES extensions, …

o …



SIMD operations

❑ Single ISA instruction performs same computation on multiple data

❑ Typically implemented with special, wider registers

❑ Example operation:
o Load 32 bytes from memory to special register X

o Load 32 bytes from memory to special register Y

o Perform addition between each 4-byte value in X and each 4 byte value in Y

o Store the four results in special register Z

o Store Z to memory

❑ RISC-V SIMD extensions (P) is still being worked on (as of 2021)

For i in (0 to 7): Z[i] = X[i] + Y[i];



Example: Intel SIMD Extensions

❑ More transistors (Moore’s law) but no faster clock, no more ILP…
o More capabilities per processor has to be explicit!

❑ New instructions, new registers
o Must be used explicitly by programmer or compiler!

❑ Introduced in phases/groups of functionality
o SSE – SSE4 (1999 –2006)

• 128 bit width operations

o AVX, FMA, AVX2, AVX-512 (2008 – 2019)
• 256 – 512 bit width operations

o F16C, and more to come? 

Performance matters, “AVX-512 Mask Registers, Again.” 2020



Aside: Do I Have SIMD Capabilities?

❑ less /proc/cpuinfo



ZMM0
YMM0

Intel SIMD Registers (AVX-512)

XMM0

ZMM1
YMM1

XMM1

ZMM31
YMM31

XMM31

…

❑ XMM0 – XMM15 
o 128-bit registers

o SSE

❑ YMM0 – YMM15
o 256-bit registers

o AVX, AVX2

❑ ZMM0 – ZMM31
o 512-bit registers

o AVX-512



SSE/AVX Data Types

YMM0

float float float float

double double

int32 int32 int32 int32

float float float float

double double

int32 int32 int32 int32

16 16

8 8

16 16

8 8 8 8 8 8

16 16

8 8

16 16

8 8 8 8 8 8

16 16

8 8

16 16

8 8 8 8 8 8

16 16

8 8

16 16

8 8 8 8 8 8 Operation on 
32 8-bit values
in one instruction!

255 0



Compiler Automatic Vectorization 

❑ In gcc, flags “-O3 -mavx -mavx2” attempts automatic vectorization

❑ Works pretty well for simple loops

❑ But not for anything complex
o E.g., naïve bubblesort code not parallelized at all

Generated using GCC explorer: https://gcc.godbolt.org/

https://gcc.godbolt.org/


Intel SIMD Intrinsics

❑ Use C functions instead of inline assembly to call AVX instructions

❑ Compiler manages registers, etc

❑ Intel Intrinsics Guide
o https://software.intel.com/sites/landingpage/IntrinsicsGuide

o One of my most-visited pages…

e.g.,
__m256 a, b, c;
__m256 d = _mm256_fmadd_ps(a, b, c); // d[i] = a[i]*b[i]+c[i] for i = 0 …7 

https://software.intel.com/sites/landingpage/IntrinsicsGuide


Intrinsic Naming Convention

❑ _mm<width>_[function]_[type]
o E.g., _mm256_fmadd_ps : 

perform fmadd (floating point multiply-add) on 
256 bits of 
packed single-precision floating point values (8 of them) 

Width Prefix

128 _mm_

256 _mm256_

512 _mm512_

Type Postfix

Single precision _ps

Double precision _pd

Packed signed integer _epiNNN (e.g., epi256)

Packed unsigned integer _epuNNN (e.g., epu256)

Scalar integer _siNNN (e.g., si256)Not all permutations exist! Check guide



Example: Vertical Vector Instructions

❑ Add/Subtract/Multiply
o _mm256_add/sub/mul/div_ps/pd/epi

• Mul only supported for epi32/epu32/ps/pd

• Div only supported for ps/pd

• Consult the guide!

❑ Max/Min/GreaterThan/Equals

❑ Sqrt, Reciprocal, Shift, etc…

❑ FMA (Fused Multiply-Add)
o (a*b)+c, -(a*b)-c, -(a*b)+c, and other permutations!

o Consult the guide!

❑ …

a

b

c

d

× × × ×

+ + + +

=

__m256 a, b, c;
__m256 d = _mm256_fmadd_pd(a, b, c);

= ==



Horizontal Vector Instructions

❑ Horizontal add/subtraction
o Adds adjacent pairs of values

o E.g., __m256d _mm256_hadd_pd (__m256d a, __m256d b)

a b

c

+
+ +

+



Shuffling/Permutation

❑ Within 128-bit lanes
o _mm256_shuffle_ps/pd/… (a,b, imm8)

o _mm256_permute_ps/pd

o _mm256_permutevar_ps/…

❑ Across 128-bit lanes
o _mm256_permute2x128/4x64 : Uses 8 bit control

o _mm256_permutevar8x32/… : Uses 256 bit control

❑ Not all type permutations exist for each type, but variables can be cast 
back and forth between types

Matt Scarpino, “Crunching Numbers with AVX and AVX2,” 2016



Blend

❑ Merges two vectors using a control
o _mm256_blend_... : Uses 8 bit control

• e.g., _mm256_blend_epi32

o _mm256_blendv_... : Uses 256 bit control
• e.g., _mm256_blendv_epi8

a b

c

? ? ? ?



Alignr

❑ Right-shifts concatenated value of two registers, by byte
o Often used to implement circular shift by using two same register inputs

o _mm256_alignr_epi8 (a, b, count)

a b

c

Example of 64-bit values being shifted by 8



Helper Instructions

❑ Cast
o __mm256i <-> __mm256, etc…

o Syntactic sugar -- does not spend cycles

❑ Convert
o 4 floats <-> 4 doubles, etc…

❑ Movemask
o __mm256 mask to -> int imm8

❑ And many more…



Case Study: Matrix Multiplication

❑ Remember simply transposing matrix B brought 6x performance
o At that point, we are bottlenecked by single-thread processing performance

o Adding SIMD gets us more!

o After this we are again bottlenecked by memory, but that is for another time

…

…

×

A B
… ×

A BT

VS

63.19 seconds 10.39 seconds
(6x performance)

… …
…

2.20 seconds
(29x performance!)



Case Study: Sorting

❑ Important, fundamental application!

❑ Can be parallelized via divide-and-conquer

❑ How can SIMD help?



The Two Register Merge

❑ Sort units of two pre-sorted registers, K elements
o minv = A, maxv = B

o // Repeat K times
• minv = min(minv,maxv)

• maxv = max(minv,maxv)

• // circular shift one value down

• minv = alignr(minv, minv, sizeof(int)) 

Inoue et.al., “SIMD- and Cache-Friendly Algorithm for Sorting an Array of Structures,” VLDB 2015



SIMD And Merge Sort

❑ Hierarchically merged sorted 
subsections

❑ Using the SIMD merger for sorting
o vector_merge is the two-register sorter 

from before

Inoue et.al., “SIMD- and Cache-Friendly Algorithm for Sorting an 
Array of Structures,” VLDB 2015



Topic Under Active Research!

❑ Papers being written about…
o Architecture-optimized matrix transposition

o Register-level sorting algorithm

o Merge-sort

o … and more!

❑ Good find can accelerate your application kernel Nx



Processor Microarchitectural Effects on
Power Efficiency

❑ The majority of power consumption of a CPU is not from the ALU
o Cache management, data movement, decoding, and other infrastructure

o Adding a few more ALUs should not impact power consumption

❑ Indeed, 4X performance via AVX does not add 4X power consumption
o From i7 4770K measurements: 

o Idle: 40 W

o Under load : 117 W

o Under AVX load : 128 W

Michael Taylor, “Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse,” 2012 



Very Long Instruction Word (VLIW)

❑ Superscalar does not change the ISA
o Complicates hardware in charge of detecting dependencies!

❑ What if we changed the ISA, and made the compiler manage ILP?

❑ Not in x86/RISC-V/ARM/…
o Sometimes as accelerator extensions!

o (RISC-V “V” extension)



Very Long Instruction Word (VLIW)

❑ Multiple instructions packaged into a Very Long Instruction
o Sometimes “bundle”

❑ Each execution operation slot has a fixed function (ALU, Mem, FP, etc)

❑ Compiler’s responsibility to create efficient instructions
o Inter-slot dependency is not checked by hardware!

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

Krste Asanovic, CS152, Berkeley



Intel Explicitly Parallel Instruction Computing
(EPIC, Itanium)



VLIW Characteristics

❑ Very good performance for computation-intensive code

❑ Very bad performance for code with many dependencies/hazards!
o Much more sensitive to hazards than single-issue pipelines

o Example: short loops

Krste Asanovic, CS152, Berkeley



Compiler’s job is important!

❑ e.g., Loop unrolling to keep execution units busy

Krste Asanovic, CS152, Berkeley



Issues with VLIW

❑ Execution unit configurations change across models
o How many Integer units, how many float units, neural units …?

o Cannot be binary compatible across models!
• Unless hardware provides an abstraction layer…?

• But that would add scheduler overhead, undermining VLIW (Itanium tried a good balance)

❑ Dependency/hazards difficult for compiler to manage
o Too many slots end up empty (low performance, large binary)

❑ But when it works well, it works remarkably well
o e.g., Scientific computing

o That’s why it is often resurrected as potential solution (Itanium, ATi TeraScale, …)



CS250P: Computer Systems Architecture
Out of Order Processing

Sang-Woo Jun

Fall 2022

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson



Back to Transparent Parallelism 

❑ Explicit parallelism is not as popular as transparent
o Everyone wants performance for free!

❑ Can we keep execution slots busy, using backwards-compatible single-
thread instruction streams?

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

Int Op 2 Mem Op 1 Mem Op 2 FP Op 1 FP Op 2Int Op 1

Krste Asanovic, CS152, Berkeley



Skylake-X Microarchitecture (2019)

Anandtech

The magic!



Apple M1 Microarchitecture (2020)

Anandtech

The magic!



OoO: Determining dependencies

Yoav Etsion, Computer Architecture 2013



Data dependency types: RaW

❑ Read-after-Write
o A “true” dependency

o We must wait until r5’s value is materialized… No other choice



OoO managing dependencies

❑ Looks like dispatch+Commit stages
added to VLIW
o Instructions wait at “reservation stations”

o Listens to forwarding paths
• “Is my input operand being written to”

o Forwarded to FU when ready
• Out of order



OoO managing dependencies

❑ Arithmetic can happen OoO, BUT
Commits should happen In-Order!
o Register writes, memory updates, etc

❑ Decoded instructions line up at 
Reorder Buffer(RoB)
o Wait until execute results available

o Wait until branch mispredict ruled out

o Commits in order of insertion



Many topics we won’t go into today!

❑ Effectively matching available operands to waiting instructions
o Looping over instructions is too slow

o N-to-N broadcast is too expensive (slow clocks!)

o Tomasulo’s algorithm!

❑ Precise interrupts become complicated
o Things are executing OoO, when a breakpoint happens, how do we line things 

back up for debugging?



Just one more topic: Register renaming

❑ Not all dependencies are RaW. Some can be resolved!
o Write-after-Read (WaR)

• e.g., 5->6

• “Anti-dependence”: r1’s value clobbered after (6)

• If we had used “r9” instead, no dependency!

o Write-after-Write (WaW)
• e.g., 7->7 across loop iteration

• (7) does not read from “r5”…

• If each loop iteration used a different reg, (r9, r10, r11,…)
no dependency!



OoO: Register renaming

❑ Two different concepts of registers
o “Architectural Registers”: Conceptually defined in ISA, software abstraction

• “RISC-V has 32 registers in the register file”

o “Physical Registers”: Larger number of registers actually in silicon
• Scheduler dynamically renames registers to an empty slot in the physical register file

• When WaW or WaR dependencies are discovered



Register renaming: Previous example…



Back to timely example: Apple M1

❑ Really good single-thread performance!

❑ How?
o “8-wide decoder” […] “16 execution units (per core)”

o “(Estimated) 630-deep out-of-order”

o “Unified memory architecture”

o Hardware/software optimized for each other

M1 Ultra
Image source: wccftech

RISC!


